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ABSTRACT 15 

 16 

The brain generates predictions to prepare for upcoming events. As life is not always 17 

100% predictable, it also estimates a level of certainty for these predictions.  Given that 18 

autistic individuals resist even small changes in everyday life, we hypothesized impaired 19 

tuning of prediction certainty in autism. To study this, EEG was recorded from 20 

adolescents and young adults with autism while they performed a probabilistic 21 

prediction task in which cue validity was parametrically manipulated. A fully predictable 22 

condition (100% cue validity) was contrasted with less predictable conditions (84, 67 23 

and 33% cue validity). Well characterized brain potentials were examined to assess the 24 

influence of cue validity on target anticipation (contingent negative variation; CNV), the 25 

evaluation of target statistics (P3), and prediction model updating (slow wave; SW). As 26 

expected, cue validity systematically influenced the amplitudes of the CNV, P3 and SW 27 

in controls.  In contrast, cue-validity effects on CNV and SW were substantially reduced 28 

in autism.  This suggests that although target statistics are accurately registered in 29 

autism, as indicated by intact modulation of the P3, they are not effectively applied to 30 

generate expectations for upcoming input or model updating. Contrasting the fully 31 

predictable with the less predictable conditions, our data suggest that autistic individuals 32 

adopted an all-or-none evaluation of certainty of their environment, rather than adjusting 33 
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certainty of predictions to different levels of environmental statistics. Social 34 

responsiveness scores were associated with flexibility in representing prediction 35 

certainty, suggesting that impaired representation and updating of prediction certainty 36 

may contribute to social difficulties in autism. 37 

 38 

SIGNIFICANCE STATEMENT 39 

 40 

The ability to make predictions is integral to everyday life. Yet, as life is not always 41 

100% predictable and it is also essential to adjust the certainty of these predictions 42 

based on the current context. This study reveals that individuals with autism are less 43 

efficient in adjusting the certainty of their predictions to the level of predictability of 44 

events. Instead, they may adopt an all-or-none evaluation of certainty. Our findings 45 

reveal novel insights into the processes underlying impaired predictive processing in 46 

autism, which may open the door to developing targeted behavioral interventions and/or 47 

non-invasive brain stimulation therapies that help autistic individuals make more 48 

accurate predictions to ease social- and rigidity-based symptoms.  49 

 50 
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INTRODUCTION 58 

 59 

Predicting what comes next is highly advantageous for adaptive behavior and leads to 60 

facilitated processing of information (Bar, 2007; Gregory, 1980; Hohwy, 2017). Many 61 

current theories of perception propose that the brain maintains a model of the 62 

environment that produces top-down predictions of upcoming stimuli at various 63 

hierarchical stages of processing, rather than simply acting on sensory inputs (Bar et 64 

al., 2006). These predictions are associated with high certainty for predictable 65 

environments and low for volatile environments (Friston & Kiebel, 2009). For adaptive 66 

behavior, predictions and the associated level of certainty (e.g., precision) must flexibly 67 

be updated based on new information. 68 

 69 

Predictive processing accounts of autism have gained popularity (Cannon et al., 2021) 70 

as they not only provide a model within which to generate falsifiable hypotheses (Friston 71 

& Kiebel, 2009), but also explanation for a diverse range of autism symptomology 72 

including cognitive-, sensory-, and motor-related characteristics (Gomot & Wicker, 2012; 73 

Van de Cruys et al., 2014). For example, problems in social communication have been 74 

attributed to reduced ability to form generative models that can be used to predict and 75 

interpret social cues (Chambon et al., 2017; Palmer et al., 2015), and resistance to 76 

change to an overly rigid predictive model (Gomot & Wicker, 2012) such that 77 

unexpected changes cause discomfort. There is mounting support for suboptimal 78 

updating of the predictive model in autism (Coll et al., 2020; Palmer et al., 2017), 79 

including evidence of slower model updating (Sapey-Triomphe et al., 2021; Soulières et 80 

al., 2011; Vishne et al., 2021), and oversensitivity to prediction errors that leads to 81 

bigger model updates in response to errors ((Karvelis et al., 2018; Van de Cruys et al., 82 

2014), but see (Knight et al., 2020)).  83 

 84 

In a recent study, a smaller difference in response time between conditions where cues 85 

were more versus less predictive of a target (84% vs. 16%) was observed in autism 86 

compared to controls, which was interpreted as reduced surprise in autism upon 87 

prediction violation (Lawson et al., 2017). This and similar findings (Perrykkad et al., 88 
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2021) appear counter-intuitive with clinical observations and introspective reports that 89 

autistic individuals overreact to violations of expected outcomes. In these studies, 90 

however, conclusions are based on comparison between conditions for which the cue is 91 

never fully predictive. Arguably, if resistance to change and rigid adherence to routines 92 

results from intolerance to any violation of predictions, a 100% predictable condition 93 

provides an important baseline against which to assess the magnitude of the surprise 94 

response. However, no study that we are aware of has juxtaposed a fully predictive 95 

condition with less predictive conditions. 96 

 97 

To better understand the representation of certainty of predictions in autism, we 98 

designed a probabilistic task where an initially fully stable environment was achieved 99 

with 100% cue validity, while three further levels of cue validity (i.e., 84%, 67% and 100 

33%) were presented later. Using this task accompanied by EEG recordings, we tested 101 

the representation of different levels of cue validity in individuals with autism. In the 102 

control group we expected a more-or-less linear relationship between the primary 103 

dependent measures and cue validity, indicating that certainty is represented in a 104 

graded manner. In contrast, given that autistic individuals over-react to deviations from 105 

expectations (Frith, 2003; Lord et al., 2012), we expected the autism group to show 106 

bigger differences in behavioral and brain responses compared to controls between a 107 

fully predictable condition (i.e., 100% cue validity) and a slightly less predictable 108 

condition (i.e., 84% cue validity). On the other hand, we expected less clear 109 

differentiation among the less predictable conditions (e.g., across 84%, 67% and 33% 110 

cue validities), consistent with findings in the literature of reduced differential responses 111 

to changes in less versus more stable environments (Lawson et al., 2017; Perrykkad et 112 

al., 2021). Well-characterized Event Related Potentials (ERPs) allowed us to assess the 113 

evaluation of the cue-target statistics (e.g. P300), and how individuals used these 114 

statistics to modulate their expectations in preparation for upcoming targets (e.g. CNV). 115 

  116 

  117 
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METHODS 118 

 119 

Experimental design and statistical analysis 120 

 121 

Participants 122 

Nineteen individuals with autism (8 left-handed, mean age: 19.6 ±2.7 years old) and 21 123 

Intelligence Quotient (IQ)- and age-matched control subjects (all right-handed; mean 124 

age: 20.7 ±2.32 years old) participated in the study, all aged between 16 and 28 years 125 

(Table 1). Autism diagnoses were made using the Autism Diagnostic Observation 126 

Schedule, Second Edition (ADOS-2) (Lord et al., 2012), the Autism Diagnostic 127 

Interview-R (Lord et al., 1994), and expert clinical judgment by a licensed psychologist 128 

at the Human Clinical Phenotyping Core of the Rose F Kennedy Intellectual and 129 

Developmental Disability Research Center (RFK IDDRC) at the Albert Einstein College 130 

of Medicine.  131 

 132 

Participants were recruited without regard to sex, race, or ethnicity. Exclusionary criteria 133 

for both groups included a performance IQ below 80; a history of head trauma; 134 

premature birth; a current psychiatric diagnosis; or a known genetic syndrome 135 

associated with a neurodevelopmental or neuropsychiatric condition. Attention 136 

deficit/hyperactivity disorder (ADD/ADHD) was not used as an exclusion criterion for the 137 

autism group, given its high comorbidity with autism. Exclusion criteria for the control 138 

group additionally included a history of developmental, psychiatric, or learning 139 

difficulties, and having a biological first-degree relative with an autism diagnosis. 140 

Participants who were on stimulant medications were asked to not take them at least 24 141 

hours prior to the experiment.  142 

 143 
TABLE 1: Participant Demographics. Mean and standard deviation values are reported for age, full-144 
scale IQ, and Social Responsiveness Scale (SRS). The Full-Scale IQ was based on Wechsler 145 
Abbreviated Scale of Intelligence (WASI).  146 
 147 
 Sex (M/F) Age Full-scale IQ  SRS 

Control 12/8 20.7 ± 2.32 100.8 ± 11.7 49.9 ± 7.2 
Autism 14/5 19.6 ± 2.7 105.3 ± 13.9 67.4 ± 10.2 

 148 
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Neuropsychological and clinical testing 149 

IQ was measured via the Wechsler Abbreviated Scale of Intelligence (Simard et al., 150 

2015). To quantify autism-related characteristics, both groups of participants completed 151 

the Social Responsiveness Scale-2 (SRS-2) (Constantino, 2013) which has five 152 

subscales (i.e., Social Awareness, Social Cognition, Social Communication, Social 153 

Motivation, and Restricted Interests and Repetitive Behavior (RRB)). We used the self-154 

report SRS-2 total t-scores to assess correlations with participant EEG and Reaction 155 

Time (RT) measures.  156 

 157 

Independent paired t-tests showed no significant group differences for age [t(44) = 0.95, 158 

p=0.34] or full-scale IQ [t(40) = -0.40, p=0.69]. Among various sub-domains of the 159 

Wechsler Intelligence test, only one domain, the processing speed index (PSI), showed 160 

a significant group difference [t(30) = 7.59, p<0.01] revealing that autism group was 161 

slower in processing information. As expected, the autism group had higher SRS-2 162 

scores than the comparison group [t(33) = -8.48, p<0.01], as well as on each of the 163 

SRS-2 sub-domains.  164 

 165 

Sequential Probabilistic Task 166 

 167 

We designed a task to probe the ability to adjust prediction certainty based on changing 168 

probabilities in the environment.  169 

 170 

Stimuli: Visual stimuli were presented to the participant, one at a time, on a computer 171 

screen at a viewing distance of 65 cm in a dimly-lit room. Stimuli consisted of basic 172 

shapes presented in gray on a black background for 100 ms, with an 850 ms inter-173 

stimulus interval (ISI). Participants performed a target detection task in which they 174 

responded as quickly as possible to the final item of a target-sequence. A target-175 

sequence was either three arrows, the first upward-facing, the second rightward-facing, 176 

and the final downward-facing, or three parallelograms, the first left-tilted, the second 177 

straight, and the final right-tilted. The stimuli in these sequences are referred to as cue1, 178 

cue2, and target (Fig. 1A). When patterns were not completed, a circle, diamond, or 179 
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triangle shape was presented instead, which we refer to as an invalid item. These 180 

shapes were also used as fillers, represented once or twice after invalid items or 181 

targets. To ensure that participants were responding to the shape sequence and not just 182 

the final shape in the sequence, catch trials in which the final shape was presented after 183 

filler shapes were also included.  184 

 185 

Probability conditions: Throughout the experiment, the probability that a target-186 

sequence was completed varied across four levels, in ~10 min blocks (Fig. 1C). Pattern 187 

initiations, always represented by cue1 of the pattern followed by cue2, were completed 188 

with the target stimulus 100%, 84%, 67% or 33% of the time, comprising four cue 189 

validity conditions (Fig. 1A). Participants were not informed of the probability condition 190 

they were in or when it changed. The two target-sequences were presented with equal 191 

probability within a given probability condition. 192 

 193 

Blocks: Stimuli were presented in mini blocks of ~1.5 minutes, separated by pauses 194 

during which time participants could rest. Each mini block was composed of 24 pattern 195 

initiations (cue1 followed by cue2) (see Table S1 for more). Pattern initiations were 196 

completed with the target 24, 20, 16 or 8 times depending on the probability condition. 197 

Participants pressed the mouse key to initiate the next mini block. Blocks of a given 198 

probability condition were composed of between 4 and 6 mini blocks.  199 

 200 

Instructions Part 1: The following instructions were printed on the screen in four parts, 201 

both for remote familiarization and the first experimental session:  202 

 203 

“You will see a shape in the middle of the screen. The shape will change about 204 

every second. Sometimes 3 consecutive shapes appear in the orders below, 205 

which we call a pattern. There are two target patterns: (pattern shapes were 206 

shown to the participant below this sentence). Your job is to touch the screen (or 207 

press the mouse button) after Pattern 1 or Pattern 2 is completed. Try to be both 208 

quick and accurate. Remember, you should respond after the pattern is 209 

completed. You can ignore any other shape. Let’s practice!” 210 
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Remote Familiarization: To briefly familiarize participants with the stimuli and task prior 211 

to the experiment, we remotely presented the task (100% cue validity condition only) for 212 

six minutes using the Neurobehavioral Systems mobile app on their smart phone or 213 

tablet, one day before the experiment.  214 

 215 

Experiment sessions: The experiment was composed of four sessions performed on a 216 

single day, separated by 15-30 minute breaks (Fig. 1C). In Sessions 1 and 2, the 217 

probability conditions were presented in the same order to all participants, whereas in 218 

Sessions 3 and 4, probability condition order was pseudo-randomized. Session 1 219 

consisted of 7 mini blocks of 100% cue validity condition. In Session 2, conditions were 220 

presented in the order of 84%, 67%, 33%, and 100%. Participants usually took a lunch 221 

break after Session 2, while taking a ~15-minute break between Session 3 and Session 222 

4. In Sessions 3 and 4, probability conditions were presented in a pseudo-randomized 223 

order (sample order is shown in Fig. 1B). The initial 100% condition, presented during 224 

remote familiarization and Session 1, was designed to establish strong cue-outcome 225 

associations. This might correspond to never broken rules that individuals with autism 226 

seek in adhering to strict routines in their everyday life.  227 

 228 

Instructions Part 2: At the end of the first session, participants were informed that going 229 

forward, the cues would not always be followed by the target, and that in these cases 230 

they should withhold their response. 231 

 232 

Feedback: To keep the participant on-task, visual feedback was provided: “correct” for 233 

responses to targets that fell within the response window of 100 to 950 ms; “miss” if 234 

they did not respond within 950 ms of the target; “too early” for responses occurring 235 

within 100 ms of target presentation (assumed to be anticipatory); and “wrong” for 236 

responses to a non-target. Feedback text was accompanied by an icon (a “✓” for 237 

correct, “x” for wrong, “!” for miss or too early). The feedback stimulus was presented for 238 

200 ms. 239 

 240 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516919doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516919


 

9 
 

 241 
FIGURE 1: The Sequential Probabilistic Task (A) Participants respond to target sequences of stimuli 242 
while the probability of sequence completion is manipulated at four levels. Stimuli consist of basic shapes 243 
presented sequentially to the participant. The two possible target sequences: A sequence of 3 arrow or 3 244 
parallelogram shapes are presented in specific orders. The participant’s task is to respond after targets 245 
with a mouse click while withholding the response after invalid items (B) A sample sequence in time from 246 
the experiment is provided as an example. The subject responds with a mouse click after completion of 247 
the three pattern items, followed by a feedback message appearing on the screen. (C) The order of 248 
probability conditions throughout the experiment is shown for a sample participant. (D) Conceptual 249 
illustration of the temporal dynamics of evoked responses of interest: CNV, P3, and SW. 250 
 251 
  252 
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EEG data collection and pre-processing  253 

 254 

Continuous EEG was recorded from 160 scalp electrodes at a rate of 512 Hz using the 255 

BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, Netherlands). Biosemi replaces 256 

the ground electrodes that are used in conventional EEG systems with two separate 257 

electrodes: Common Mode Sense (CMS) and Driven Right Leg (DRL) passive 258 

electrodes. These two electrodes create a feedback loop, thus rendering 259 

them as references. Data were down-sampled to 128 Hz for subsequent analyses, to 260 

reduce computing demands. EEG data were pre-processed using Matlab and eeglab 261 

(Delorme & Makeig, 2004) on local computers or remote cluster computing via 262 

Neuroscience Gateway (Sivagnanam et al., 2013). Data were high-pass filtered at 0.75 263 

Hz. The 60 Hz line noise was removed using CleanLine function of eeglab, run twice 264 

with a window and step-size of four. Channels that were two standard deviations away 265 

from the average power spectrum in the 0.1-50 frequency band were rejected.  266 

 267 

Infomax Independent Component Analysis (ICA) was used to remove potential non-268 

brain related activity, mainly eye-movement related muscle artifacts. For each 269 

Independent Component (IC), the iclabel program (Pion-Tonachini et al., 2019) was 270 

used to calculate the probabilities for that IC belonging to the seven different IC 271 

categories including Brain, Muscle Noise, Eye Noise, Heart Noise, Line Noise, Channel 272 

Noise, and Other. A total noise metric was created via summation of muscle-, eye-, 273 

heart-, line-, channel-related noise probabilities. An IC was excluded only if it met both 274 

of the following criteria: 1) had more than 50% chance for the noise category, 2) had 275 

less than 5% chance of the brain category. This led to an average of 5 ICs being 276 

rejected among the top 20 ICs (i.e., the ICs that accounted for the majority of the 277 

signal). Three of these on average had more than 50% chance of being a component 278 

related to eye blinks or movements. The channels that were rejected prior to ICA were 279 

interpolated using linear interpolation method. After referencing data to the average of 280 

two scalp channels that are near the right and left mastoids (i.e., E17 and B18 on 281 

BioSemi 160 System). For P3 and SW analyses data were epoched between -100 and 282 

950 ms with respect to stimulus onset, with the first 100 ms of the epoch serving as 283 
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baseline. For the CNV analyses data were epoched between -100 and 950 ms with 284 

respect to the second cue, with the first 100 ms serving as baseline. Noisy trials were 285 

rejected based on a custom script that rejects trials with amplitudes that are more than 286 

three standard deviations away from the mean of maximum global field power 287 

amplitudes for each trial type. After that, trails were averaged for each stimulus type. 288 

 289 

Data analyses  290 

EEG, reaction time, accuracy, and clinical data were analyzed in Matlab and Python 291 

using custom libraries and scripts. We assessed the effect of cue validity on three well-292 

characterized Event Related Potentials (ERPs) to the temporal dynamics of predictive 293 

processing in response to changing environments: The contingent negative variation 294 

(CNV), a slow negative-going ERP that typically systematically varies in amplitude with 295 

the certainty of target expectation (Thillay et al., 2016) and represents anticipatory brain 296 

activity involved in preparing a response to a temporally predictable target (Brunia, 297 

2003), and the P3 (aka P300), a positive-going ERP associated with target detection 298 

and evaluation  that occurs in response to a target, and varies in amplitude with respect 299 

to target probability (Bidet-Caulet et al., 2012; Polich, 2007, 2012). While the P3 allowed 300 

us to assess the evaluation of the cue-target statistics, the CNV provided information 301 

about how individuals used these statistics to modulate their expectations in preparation 302 

for upcoming targets. In addition, we measured the slow wave (SW) to index updating of 303 

the internal model. Selection of the temporal windows and scalp regions used for 304 

analysis of each of these components was informed by the literature and modified if 305 

needed based on inspection of the specific timing and topography of the response of 306 

interest, without regard for experimental condition or group. The CNV was measured as 307 

the average amplitude over the 100 ms window preceding the onset of the imperative 308 

stimulus (the target or the invalid item), from a centrally placed electrode (one anterior 309 

to the classic Cz location) (Thillay et al., 2016). The P3 was measured as the average 310 

amplitude between 250-450 ms (+/-100 ms from the 350 ms peak) at Pz (Polich, 2007). 311 

The Slow Wave response (SW) was measured as the average amplitude between 650-312 

850 ms (+/-100 ms from the 750 ms peak) following the target at electrode Fpz (de Gee 313 

et al., 2021; Sambrook et al., 2018). While measuring P3 and CNV responses was an 314 
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apriori decision, the SW was a post-hoc analysis (see the Results and Discussion 315 

sections for justification). For behavioral analyses, RT, percent hits, and false alarms 316 

were calculated for each participant for each cue validity condition, and subsequently 317 

averaged per participant group. In our tasks, in line with prior work, RT was expected to 318 

be faster with increasing cue validity across conditions (Lawson et al., 2014; Thillay et 319 

al., 2016). 320 

 321 

For statistical analyses of the single-trial relationship between cue validity and ERP 322 

amplitude, we conducted linear mixed-effects models using statsmodel package in 323 

Python (Seabold & Perktold, 2010). Models were fit using a maximum likelihood 324 

criterion defining subjects as a random factor. ERP amplitudes were the numeric 325 

dependent variable. Group was a dummy-coded fixed factor.  326 

 327 

To test the hypothesis that flexibilty in certainty of predictions relates to social 328 

responsiveness, we conducted correlation analyses between clinical scores and our 329 

primary EEG measures. We took the difference between 84% and 33% conditions as 330 

an index of a participants’ ability to differentiate between different probability conditions 331 

(e.g., prediction flexibility index). We then performed Pearson’s correlation between this 332 

index and social responsiveness (as measured by SRS-2).  333 

 334 

Our hypothesis-driven analyses risks oversight of potentially informative patterns in 335 

these rich high-density EEG data. Therefore, exploratory analyses were performed on 336 

the full data matrix to serve as a hypothesis generation tool for future studies. To this 337 

end, running statistical tests were carried out across all channels and time points 338 

(Molholm et al., 2002; Morie et al., 2014). We displayed the results of running t-tests 339 

between 84% and 33% conditions as an intensity plot (e.g. Fig. S1). The x and y axes 340 

represent time and electrode location respectively, while the heatmap represents the p 341 

value for each data point. Called statistical cluster plots (SCPs), this provided us a 342 

simple approach for testing for differences between a given pair of experimental 343 

conditions across the entire data matrix. Following the rationale of earlier approaches 344 

(Molholm et al., 2002; Morie et al., 2014), type 2 errors were minimized by only 345 
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displaying significant differences when at least three consecutive time points (from data 346 

downsampled to 128 Hz, thus representing a 22ms time window) and three neighboring 347 

channels (significance was required for at least three out of eight surrounding channels 348 

in the Biosemi 160 system) were significant. 349 

Code accessibility 350 

All code is available online under three repositories: 1) The code that was generated for 351 

stimulus presentation using the Presentation software ® is available 352 

at https://github.com/seydareisli/splt; 2) the Matlab code that was used to process data 353 

is available at https://github.com/seydareisli/mat; 3) the Python code that was used for 354 

visualization and figures is available at https://github.com/seydareisli/viz.  355 

 356 

RESULTS 357 

  358 

We designed a sequential probabilistic task where participants responded to the 359 

completion of three sequentially presented shapes (e.g., three arrows, the first upward-360 

facing, the second right-facing, and the final downward-facing; aka cue1, cue2 and 361 

target) while parametrically manipulating sequence completion at four levels: 100%, 362 

84%, 67%, and 33%. The effects of probability condition and autism diagnosis on brain 363 

signals (i.e., P3 and SW after targets; CNV after cue2) and RT were examined to 364 

understand how different levels of certainty in predictions (e.g., stimulus predictability) is 365 

represented in the brains of individuals with autism. 366 

 367 

Electrophysiological data 368 

 369 

To assess if brain potentials reliably modulate as a function of probability and whether 370 

this significantly differs by group, we performed three separate linear mixed effect 371 

models for P3, CNV, and SW. ERP amplitudes were best fit by a linear mixed effect 372 

model by including an interaction term between group (control and autism) and 373 

probability condition (100%, 84%, 67%, 33%). Post-hoc mixed models were conducted 374 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.17.516919doi: bioRxiv preprint 

https://github.com/seydareisli/splt
https://github.com/seydareisli/mat
https://github.com/seydareisli/viz
https://doi.org/10.1101/2022.11.17.516919


 

14 
 

for each potential pairwise comparison (100-84%, 100-67%, 100-33%, 84-67%, 84-375 

33%, 67-33%) to unpackage the significant main effects and group-by-condition 376 

interactions. Results are reported below and summarized in Table 1 and in 377 

supplementary Table 2.  378 

  379 

CNV: In both the autism and control groups, a CNV was observed just prior to onset of 380 

the imperative stimulus (target or invalid item). The CNV, which had a central negativity, 381 

was most prominent in the 100 ms prior to stimulus onset (Fig. 2,  S2). In the control 382 

group, this amplitude appeared more negative-going as cue validity decreased. In the 383 

autism group, CNV amplitude appeared highly similar across the three less predictable 384 

conditions (i.e., 84%, 67%, 33%), while these clearly segregated from the 100% 385 

condition. Statistical testing of the data revealed a significant effect of condition (ß=1.54, 386 

SE=0.18, p<0.01) and a group-by-condition interaction (ß=-0.64, SE=0.26, p=0.01), but 387 

no significant effect of group (ß=1.38, SE=10.99, p=0.90). Post-hoc follow-up tests 388 

revealed that the condition effect was driven by all pairwise comparisons except the 84-389 

67% comparison (the two more ambiguous conditions), whereas the group-by-condition 390 

interaction showed smaller differences in the autism compared to the control group for 391 

the comparisons of the 33% to the other conditions. 392 

  393 

P3: Both groups exhibited a typical P3 in response to target stimuli that was positive-394 

going over posterior-central scalp and peaked at about 350 ms. Furthermore, in both 395 

groups, the amplitude of the P3 varied as a function of cue validity (Fig. 3, S2). The P3 396 

statistical model revealed a significant effect of condition (ß=-3.19, SE=0.21, p<0.01), 397 

while showing no main effect of group (ß=-0.43, SE=9.02, p=0.96) or group-by-condition 398 

interaction (ß=0.14, SE=0.30, p=0.65). The main effect of condition was driven by all 399 

pairwise comparisons of cue validity conditions. 400 

  401 

SW: The P3 was followed by a second phase of post-target activity that was positive 402 

going over the frontal scalp and was apparent in both groups. This was seen in the 650-403 

850 ms window. For the control group, this response appeared to be larger and of 404 

longer duration in lower cue validity conditions, whereas there was no obvious 405 
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systematic modulation of this response by condition in the autism group (Fig. 4) (see the 406 

second-order polynomial fits in Fig. 4B showing a linear versus curved relationship in 407 

controls versus autism groups). This response resembles the SW component, a brain 408 

response that is observed in cued  tasks (de Gee et al., 2021; Loveless et al., 1987; 409 

Ruchkin et al., 1980), typically occurs in this same window after a target or invalid item, 410 

also has a positive-going frontal scalp distribution, and varies in amplitude with respect 411 

to cue validity. The statistical model revealed a significant effect of condition (ß=-1.44, 412 

SE=0.26, p<0.01) and a significant group-by-condition interaction (ß=1.72, SE=0.38, 413 

p<0.01), but no main effect of group (ß=-0.86, SE=11.29, p=0.94). The main condition 414 

effect was driven by all pairwise comparisons of probability conditions except the 67-415 

33% contrast. The significant group-by-condition interaction was due to all pairwise 416 

comparisons except the 100-84% and 67-33%. Group-by-condition interactions 417 

reflected smaller differences in the autism compared to control group.  In autism, the 418 

SW was of greater amplitude in the 84% compared to the 67% and 33% conditions, 419 

which contrasts with opposite pattern in controls (see Fig. 4 and Table S4). 420 

  421 
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 422 

 423 

FIGURE 2: CNV (A) ERP waveforms showing responses timelocked to cue2 at Cz for each of the cue 424 
validity conditions. The CNV time window is highlighted in green (100 ms prior to target onset). (B) 425 
Average CNV amplitude across the four validity conditions measured at Cz with second-order polynomial 426 
fits shown for each group. (C) CNV amplitudes across 84%, 67%, 33% conditions normalized to 100% 427 
condition, error bars showing 95% confidence intervals. (D) Pearson’s correlation between Social 428 
Responsiveness Scores and CNV flexibility index (difference waveform between 84% and 33% 429 
conditions). (E) CNV topographies for 84% condition (left), difference between 33% and 84% conditions 430 
(middle), and difference between 84% and 100% conditions (right). 431 
 432 

 433 
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434 
FIGURE 3: P3 (A) Target-locked ERPs at Pz; P3 time window highlighted in green panel. (B) Average P3 435 
amplitudes for each group across the four validity conditions. Lines show second-order polynomial fits for 436 
each group. (C) P3 amplitudes across 84%, 67%, 33% conditions normalized for 100% condition, error 437 
bars showing 95% confidence intervals. (D) Correlation between Social Responsiveness Scores and P3 438 
flexibility index (difference waveform between 84% and 33% conditions). (E) P3 topographies for the 84% 439 
condition (left) and P3 difference topographies between 84% and 33% conditions (right) are included for 440 
each group. 441 
 442 

Statistical Cluster Plots: The SCPs contrasting the 84 and 33% conditions showed 443 

extensive differences across a wide swath of the scalp in the control group. These onset 444 

at ~300 ms and extended to 750 ms, picking up again in the ~775 to 850 ms period, and 445 

showing a third voley of activity in the 900 to 950 ms period. The autism group showed 446 

much more spatially and temporally circumscribed condition effects, with differences 447 

centered around frontocentral regions in the 350 to 550 ms period (Fig. S1) 448 

 449 
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 450 
FIGURE 4: SW (A) Target-locked ERPs at Fpz; SW time window is highlighted in green. (B) Average SW 451 
amplitude for each cue validity condition with second-order polynomial fits. (C) CNV amplitudes across 452 
84%, 67%, 33% conditions normalized to 100% condition, error bars showing 95% confidence intervals. 453 
(D) Correlations between SRS and SW flexibility index (difference waveform between 84% and 33% 454 
conditions). (E) Topographies are included for each group for the 84% condition (left) and SW difference 455 
topographies between 84% and 33% conditions (right) are included for each group. 456 
 457 

 458 

Behavioral Results  459 

 460 

Mean RT for the control and autism groups was 330 and 349 ms, respectively. For both 461 

groups, RTs were fastest for the highest cue validity condition, and slowest for the 462 

lowest. For the control group these RT differences scaled with cue validity, increasing 463 

by ~20 ms as cue validity decreased (with mean increases of 16, 27, and 16 ms from 464 

100 to 84%, 84 to 67% and 67 to 33%, respectively). A similar pattern was seen in the 465 

autism group, except that RT barely changed between the 84 and 67% conditions (with 466 

increases of 20, 02, and 20 ms from 100 to 84%, 84 to 67% and 67 to 33%, 467 

respectively) (Fig. 5). To assess this statistically, we first performed a linear mixed effect 468 

model for RT with an interaction term between group and probability condition. The 469 

model revealed both a significant effect of condition (ß=-96.37, SE=4.23, p<0.01) and a 470 

group-by-condition interaction (ß=-34.43, SE=6.10, p<0.01) while showing no effect of 471 
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group (ß=-6.43, SE=183.55, p=0.97) (Table 2). Follow-up mixed-model tests revealed 472 

that the main condition effect was driven by all pairwise comparisons of probability 473 

condition, whereas the group-by-condition interaction was due to the 100%-67%, 100%-474 

33%, 84%-67%, 84%-33% condition pairs, reflecting smaller differences in mean RTs 475 

between these conditions in autism (See Table 2 and Table S5).  476 
 477 
TABLE 2: Mixed Model Results for CNV, P3, SW, and RT. Group (Grp) = autism and neurotypical; 478 
Condition (Con) = probability condition; 100%, 84%, 67%, 33%). 479 
 480 
 481 
 Coefficient SE z P 
CNV     

Intercept -2.7 7.77 -0.35 0.73 
Condition effect 1.54 0.18 8.69 <0.01 

Group effect  1.38 10.99 0.13 0.9 
Con:Grp Interaction -0.64 0.26 -2.5 0.01 

P3     
Intercept 4.2 6.38 0.66 0.51 

Condition effect -3.19 0.21 -15.43 <0.01 
Group effect  -0.43 9.02 -0.05 0.96 

Con:Grp Interaction 0.14 0.3 0.46 0.65 
SW     

Intercept 2.96 7.98 0.37 0.71 
Condition effect -1.44 0.26 -5.59 <0.01 

Group efffect  -0.86 11.29 -0.08 0.94 
Con:Grp Interaction 1.72 0.38 4.59 <0.01 

  RT 482 
Intercept 399.55 129.23 3.09 <0.01 

Condition effect -96.38 4.23 -22.76 <0.01 
Group efffect  -6.43 183.55 -0.03 0.97 

Con:Grp Interaction 34.43 6.10 5.63 <0.01 
 483 
 484 
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 485 
FIGURE 5: Reaction Time and Performance. (A) Target RTs in ms for the four probability conditions for 486 
control (left) and autism (bottom) groups. (B) Percent hit rate by probability condition. Dots that are 487 
connected by lines show averages. Each stand-alone dot represents an individual subject.   488 
 489 
 490 

We examined the relationship between our neural and RT measures of flexibility in 491 

certainty of predictions (flexibility index: difference between 84% and 33% conditions) 492 

and SRS scores. These analyses were performed on a subset of the data due to 493 

missing SRS scores from 10 participants (5 each from the control and autism groups). 494 

We found significant correlations for the CNV (r(28) = 0.49, p < 0.01), P3 (r(28) = -0.31, 495 

p = 0.04), and SW (r(28) = -0.33, p = 0.03), whereas no significant correlation was found 496 

for RT (r(28) = -0.14, p = 0.22). 497 

 498 

Both groups performed the task with high accuracy (96% and 93% respectively for 499 

control and autism groups; see Fig. 6).  Mean hit rate to targets for the control group 500 

was more than 97% in the three highest cue validity conditions, and 94% for the lowest 501 

cue validity condition. For the autism group, hit rates decreased as cue validity 502 

decreased, from 95% to 92%. Statistical analyses revealed a main effect of condition 503 

effect (ß=0.02, SE<0.01, p<0.01) and a group by condition interaction (ß=0.02, 504 

SE<0.01, p=0.03; see Table S6).   505 

 506 

  507 
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DISCUSSION 508 

 509 

"For those of us who are on the spectrum, almost everything is black or white." 510 
- Greta Thunberg (Thunberg, 2018) 511 

 512 

We investigated how young adults with and without autism adjust prediction certainty, a 513 

central feature of predictive processing, upon parametric manipulation of cue validity 514 

ranging from 33% to 100%. Three distinct brain processes served to index the 515 

anticipation of temporally predictable targets (CNV), the evaluation and registration of 516 

target events (P3), and the updating of internal models (SW). Whereas the control 517 

group showed graded modulation of these brain responses and RT that was 518 

proportional to the level of cue validity, this pattern was not uniformly evident in the 519 

autism group. In particular, for the CNV (Fig. 2), there was a pronounced difference 520 

between the fully predictable condition (100% cue validity) and the less predictable 521 

conditions, whereas differences among the three less predictable conditions was 522 

substantially reduced. These CNV data suggest that autistic individuals do not modulate 523 

certainty of their predictions based on cue validity in the same highly flexible and 524 

reliable manner as do controls. Instead, the current data suggest that in autism certainty 525 

of a prediction is more binary (it’s either certain or uncertain) than graded, at least when 526 

faced with a changing and uncertain environment. Arguably, outsized responses to 527 

small deviations from what is expected (i.e., the 84% condition) could lead to the 528 

insistence on sameness phenotype, in which rules and routines are perpetually sought 529 

in everyday life, whereas the reduced differentiation among the 84, 67, and 33% cue 530 

validity conditions may relate to difficulty applying nuanced predictive information under 531 

ambiguous situations, such as those encountered in complex everyday social 532 

interactions.   533 

 534 

The target P3, in contrast to the CNV, systematically modulated by cue validity not only 535 

for the control but also for the autism group (Fig. 3). This finding aligns with studies 536 

showing that autistic individuals represent stimulus statistics in a typical manner 537 

(Cannon et al., 2021; Knight et al., 2020; Manning et al., 2017), although it should be 538 

noted that condition effects were less robust in the autism group (see Fig. S1). The 539 
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finding of relatively intact P3 modulation combined with impaired CNV modulation 540 

suggests that while stimulus statistics are calculated, the application of these stimulus 541 

statistics to prediction certainty is impaired. Future work is needed to determine if this 542 

finding is specific to environments where cue-target contingencies change relatively 543 

frequently, as in the present study, or if it represents a more generalized mode of 544 

operation in making predictions.   545 

 546 

The CNV results appear to fit well with the theory of Highly Inflexible and Precise 547 

Prediction Errors in Autism (HIPPEA) proposed by Van de Cruys and colleagues (Van 548 

de Cruys et al., 2014). This theory posits that an atypically high level of precision is 549 

assigned to prediction errors in autism, by which even little variances in the environment 550 

will induce an update in the predictive model; this in turn leads to overfitted models, as 551 

even insignificant details/changes are considered important and reacted to, rather than 552 

being disregarded. Thus, with more precise prediction errors, even small changes 553 

evoke a large response, much as we see in the CNV responses for the autism group. 554 

Our data further suggest that prior empirical findings of reduced differentiation among 555 

different levels of cue validity (Lawson et al., 2017; Perrykkad et al., 2021) may not be 556 

indicative of reduced surprise, but rather of reduced flexibility in the representation of 557 

uncertainty.  Whereas a 100% cue valid condition was not included in these studies, it 558 

clearly provides an important  comparison when evaluating the magnitude of 559 

representation of uncertainty in predictions.  560 

 561 

The behavioral data were also consistent with altered modulation of prediction certainty 562 

in autism. Whereas mean RT followed the expected pattern in the control group such 563 

that responses were faster when cue validity was higher and slower when it was lower 564 

(Fig. 5), mean RT differences between conditions were uniformly and statistically 565 

smaller in autism, and there was no RT difference at all between the intermediate 566 

conditions (84 and 67%).  This attenuation of cue-validity effects on RT was present 567 

despite overall similar RTs for the autism and control groups (349 versus 330 ms).   568 

 569 

 570 
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Inspection of the ERPs revealed an additional response of interest, a positive-going 571 

distribution over frontal scalp 650-850 ms post target stimulus that, like the CNV and 572 

P3, varied in amplitude with respect to cue validity in the control group. This resembled 573 

the Slow Wave (SW) response that that has been highlighted in prediction tasks (de 574 

Gee et al., 2021; Loveless et al., 1987; Ruchkin et al., 1980), has a frontal-maximum 575 

topography (Loveless et al., 1987), and peaks between 500-800 ms after the event that 576 

follows a cue (de Gee et al., 2021; Sambrook et al., 2018). Even though the functional 577 

role of this component is debated, the observation that the SW is present during later 578 

stages of information processing has been taken to suggest that it may reflect an in-579 

depth analyses or re-evaluation process (Karniski et al., 1993), or a need for further 580 

processing (Ruchkin et al., 1980). In the context of the current study, the SW response 581 

may reflect participants’ re-evaluation and updating of the internal model of cue-target 582 

contingencies. In the control group, SW in response to targets was largest in amplitude 583 

for the 2 lowest cue validity conditions and smallest for the 100% condition (Fig. 4).This 584 

systematic pattern was not as evident in the autism group (Fig. 4), suggesting that 585 

autistic individuals do not update their internal model in a typical manner, after 586 

registering outcomes (Coll et al., 2020; Van de Cruys et al., 2013; Van de Cruys et al., 587 

2017; Vishne et al., 2021). Figure 4B illustrates that numerically, for controls, SW 588 

increases systematically as target probability decreases, whereas in autism the 589 

difference was biggest between the 100% and the 84% conditions.  590 

 591 

Of vital interest is whether and how these electrophysiological and behavioral indices of 592 

flexibility of predictions map onto the autism phenotype. To begin to address this 593 

question, we focused on SRS scores.  The SRS scores provide a continuous measure 594 

of characteristics associated with the autism phenotype in the broader population as 595 

well as in autism (Constantino, 2013). These were significantly associated with reduced 596 

flexibility in representing prediction certainty (as measured by CNV, P3 and SW 597 

response differences between the 84% and 33% conditions). Although this requires 598 

replication in larger samples, these data provide preliminary evidence that impaired 599 

predictive processing may contribute to social difficulties and other behaviors 600 

associated with autism.  601 
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While our approach cannot identify the precise locus of disrupted processing, prior 602 

studies suggest several cortical/subcortical regions that contribute to CNV generation 603 

and the modulation of prediction certainty. For example, the anterior cingulate cortex 604 

(ACC) monitors the likelihood of events (Brown & Braver, 2005), is consistently 605 

highlighted in probabilistic tasks in functional imaging (Agam et al., 2010; O'Reilly et al., 606 

2013) and animal studies (Stolyarova et al., 2019), and is thought to contribute to the 607 

CNV response (Gómez et al., 2003; Mulert et al., 2004; Nagai et al., 2004). The 608 

thalamus has also been implicated in the representation of precision in the context of 609 

predictive models (Kanai et al., 2015), and has been shown to contribute to trial-by-trial 610 

modulation of CNV amplitude (Nagai et al., 2004). Likewise, the prefrontal cortex is 611 

implicated in the representation of basic and more abstract prediction errors (Alexander 612 

& Brown, 2018; Zarr & Brown, 2016), and contributes to the CNV response (Gómez et 613 

al., 2007; Gómez et al., 2003; Mulert et al., 2004; Scheibe et al., 2010). Compellingly, 614 

activity in all of these brain regions has been shown to differ in autism (Balsters et al., 615 

2016; Di Martino et al., 2009; Solomon et al., 2015; Tomasi & Volkow, 2019). 616 

Nevertheless, future studies using functional magnetic resonance imaging (fMRI) or 617 

intracranial EEG will be essential to identifying the network that underlies atypical 618 

representation of certainty in autism.  619 

 620 

Finally, we should note that to understand whether there is a causal role between 621 

altered predictive processes and autism, it will be informative to assess at-risk 622 

populations (e.g., siblings of individuals diagnosed with autism) before the emergence 623 

of autism symptomatology, during infancy/early childhood (<2 years of age; e.g., see 624 

(Constantino et al., 2021)). For this, it will be necessary to design robust experimental 625 

assays of altered predictive processing for administration to very young children and 626 

lower functioning individuals. Understanding the exact problems with predictive 627 

processing is critical to the development of biomarkers for autism characteristics, and 628 

informing targeted therapies such as cognitive-behavioral approaches to helping 629 

affected individuals make more flexible predictions in everyday life.  630 

 631 
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