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 14 
ABSTRACT 15 

The brain generates predictions to prepare for upcoming events. As life is not always 16 

100% predictable, it also estimates a level of certainty for these predictions based on 17 

their likelihood.  Given that autistic individuals resist even small changes in everyday 18 

life, we hypothesized impaired tuning of prediction certainty in autism. To study this, 19 

EEG was recorded from adolescents and young adults with autism, and age- and IQ-20 

matched controls while they performed a probabilistic cued target detection task in 21 

which cue validity was parametrically manipulated. A fully predictable condition (100% 22 

cue validity) was contrasted with less predictable conditions (84%, 67%, and 33% cue 23 

validity). The contingent negative variation (CNV), a brain response associated with the 24 

anticipation of a predictable target, was examined to test the influence of cue validity on 25 

target predictions. Whereas the CNV systematically modulated by cue validity in the 26 

control group, this was not the case for the autism group. In contrast, intact modulation 27 

of the target P3 response by cue validity indicated that stimulus statistics are registered 28 

in a typical manner in autism.  This suggests that in autism target statistics were 29 

registered but were not effectively applied to modulate expectations (e.g., certainty) of 30 

upcoming predictable stimuli.  This adds to our understanding of differences in 31 

predictive processing in autism and suggests that the tuning of prediction certainty is 32 

particularly vulnerable in this population.  33 
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SIGNIFICANCE STATEMENT 34 

 35 

The ability to make predictions is integral to everyday life. Yet, as life is not always 36 

100% predictable, it is also essential to adjust the certainty of these predictions based 37 

on the current context. This study reveals that individuals with autism are less efficient 38 

in adjusting the certainty of their predictions to the level of predictability of events, 39 

although they can process the stimulus statistics. Our findings reveal novel insights into 40 

the processes underlying impaired predictive processing in autism, which may open the 41 

door to developing targeted behavioral interventions to help autistic individuals make 42 

more flexible predictions to ease social- and rigidity-based symptoms.  43 

 44 
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INTRODUCTION 67 
 68 

Predicting what comes next is highly advantageous for adaptive behavior and leads to 69 

facilitated processing of information (Bar, 2007; Gregory, 1980; Hohwy, 2017). Many 70 

current theories of perception propose that the brain maintains a model of the 71 

environment that produces top-down predictions of upcoming stimuli at various 72 

hierarchical stages of processing, rather than simply acting on sensory inputs (Bar et 73 

al., 2006). These predictions are associated with high certainty for predictable 74 

environments and low certainty for volatile environments (Friston & Kiebel, 2009). For 75 

adaptive behavior, predictions and the associated level of certainty (e.g., precision) 76 

must be flexibly updated based on new information. 77 

 78 

Over the last decade, predictive processing accounts of autism have gained popularity 79 

(Cannon et al., 2021) as they not only provide a model within which to generate 80 

falsifiable hypotheses (Friston & Kiebel, 2009), but also explanation for a diverse range 81 

of autism symptomology including cognitive-, sensory-, and motor-related 82 

characteristics (Gomot & Wicker, 2012; Van de Cruys et al., 2014). For example, 83 

problems in social communication have been attributed to a reduced ability to form 84 

generative models that can be used to predict and interpret social cues (Chambon et 85 

al., 2017; Palmer et al., 2015), and resistance to change to an overly rigid predictive 86 

model (Gomot & Wicker, 2012) such that unexpected changes cause discomfort. There 87 

is mounting support for suboptimal updating of the predictive model in autism (Coll et 88 

al., 2020; Palmer et al., 2017), including evidence of slower model updating (Sapey-89 

Triomphe et al., 2021; Soulières et al., 2011; Vishne et al., 2021), and oversensitivity to 90 

prediction errors that leads to bigger model updates in response to errors ((Karvelis et 91 

al., 2018; Van de Cruys et al., 2014), but see (Knight et al., 2020)). 92 

 93 

In a recent study, a smaller difference in response times between conditions where 94 

cues were more versus less predictive of a target (84% vs. 16%) was observed in 95 

autism compared to controls, which was interpreted as reduced surprise in autism upon 96 

prediction violation (Lawson et al., 2017). This and similar findings in individuals with 97 
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autism (Arthur et al., 2021) as well as in individuals in general population with high 98 

autistic traits (Perrykkad et al., 2021) appear counter-intuitive with clinical observations 99 

and introspective reports that autistic individuals overreact to violations of expected 100 

outcomes. In these studies, however, conclusions are based on comparison between 101 

conditions for which the cue is never fully predictive. Arguably, if resistance to change 102 

and rigid adherence to routines results from intolerance to any violation of predictions, a 103 

100% predictable condition provides an important baseline against which to assess the 104 

magnitude of the surprise response. However, no study that we are aware of has 105 

juxtaposed a fully predictive condition with less predictive conditions. 106 

 107 

To better understand prediction certainty in autism, we designed a probabilistic task 108 

where an initially fully stable environment was achieved with 100% cue validity, while 109 

three further levels of cue validity (i.e., 84%, 67%, and 33%) were presented later. 110 

Using this task accompanied by EEG recordings, we tested the representation of 111 

prediction certainty in individuals with autism. We measured well-characterized Event 112 

Related Potentials (ERPs) to gain insight into different aspects of predictive processing 113 

in response to changing environments: The contingent negative variation (CNV), a slow 114 

negative-going ERP that typically systematically varies in amplitude with the certainty of 115 

target expectation (Thillay et al., 2016) and represents anticipatory brain activity 116 

involved in expectation of a temporally predictable target (Brunia, 2003), and the P3 117 

(aka P300), a positive-going ERP associated with target detection and evaluation that 118 

occurs in response to a target, and varies in amplitude with respect to target probability 119 

(Bidet-Caulet et al., 2012; Polich, 2007, 2012). While the P3 allowed us to assess the 120 

evaluation of the cue-target statistics, the CNV provided information about how 121 

individuals used these statistics to modulate the certainty of their expectations in 122 

preparation for upcoming targets. 123 

 124 

In the control group, we expected a more-or-less linear relationship between the primary 125 

dependent measures and cue validity, indicating that certainty of predictions (CNV) is 126 

represented in a graded manner and that cue-target probabilities impact target-related 127 

processes (P3 and reaction time). In contrast, given that autistic individuals over-react 128 
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to deviations from expectations (Frith, 2003; Lord et al., 2012), we expected the autism 129 

group to show bigger differences between a fully predictable condition (i.e., 100% cue 130 

validity) and a slightly less predictable condition (i.e., 84% cue validity) compared to 131 

controls. On the other hand, we expected less clear differentiation among the less 132 

predictable conditions (e.g., across 84%, 67%, and 33% cue validities), consistent with 133 

findings in the literature of reduced differential responses to changes in less versus 134 

more predictable environments in autism (Arthur et al., 2021; Lawson et al., 2017).   135 

  136 

 137 
METHODS 138 
 139 

Participants 140 

Nineteen individuals with autism (8 left-handed, mean age: 19.6 ±2.7 years old) and 21 141 

Intelligence Quotient (IQ)- and age-matched control subjects (all right-handed; mean 142 

age: 20.7 ±2.32 years old) participated in the study, all aged between 16 and 28 years 143 

(Table 1). Autism diagnoses were made using the Autism Diagnostic Observation 144 

Schedule, Second Edition (ADOS-2) (Lord et al., 2012), the Autism Diagnostic 145 

Interview-R (Lord et al., 1994), and expert clinical judgment by a licensed psychologist 146 

at the Human Clinical Phenotyping Core of the Rose F Kennedy Intellectual and 147 

Developmental Disability Research Center (RFK IDDRC) at the Albert Einstein College 148 

of Medicine.  149 

 150 

Participants were recruited without regard to sex, race, or ethnicity. Exclusionary criteria 151 

for both groups included a performance IQ below 80; a history of head trauma; 152 

premature birth; a current psychiatric diagnosis; or a known genetic syndrome 153 

associated with a neurodevelopmental or neuropsychiatric condition. Attention 154 

deficit/hyperactivity disorder (ADD/ADHD) was not used as an exclusion criterion for the 155 

autism group, given its high comorbidity with autism. Exclusion criteria for the control 156 

group additionally included a history of developmental, psychiatric, or learning 157 

difficulties, and having a biological first-degree relative with an autism diagnosis. 158 

Participants who were on stimulant medications were asked to not take them at least 24 159 

hours prior to the experiment.  160 
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TABLE 1: Participant Demographics. Mean and standard deviation values are reported for age, full-161 
scale IQ, and Social Responsiveness Scale (SRS). The Full-Scale IQ was based on Wechsler 162 
Abbreviated Scale of Intelligence (WASI).  163 
 164 

 Sex (M/F) Age Full-scale IQ  SRS 

Control 12/8 20.7 ± 2.32 100.8 ± 11.7 49.9 ± 7.2 

Autism 14/5 19.6 ± 2.7 105.3 ± 13.9 67.4 ± 10.2 
 165 

 166 

Neuropsychological and clinical testing 167 

IQ was measured via the Wechsler Abbreviated Scale of Intelligence (Simard et al., 168 

2015). To quantify autism-related characteristics, both groups of participants completed 169 

the Social Responsiveness Scale-2 (SRS-2) (Constantino & Gruber, 2012) which has 170 

five subscales (i.e., Social Awareness, Social Cognition, Social Communication, Social 171 

Motivation, and Restricted Interests and Repetitive Behavior (RRB)). We used the self-172 

report SRS-2 total t-scores to assess correlations with participant EEG and Reaction 173 

Time (RT) measures. For the SRS-2, lower scores indicate higher levels of social 174 

responsivity.  Scores below 59 are considered to be in normal range, whereas scores of 175 

76 and above indicate severe social impairment (Constantino & Gruber, 2012). 176 

Intermediate scores, between 60 and 75, are associated with mild to moderate social 177 

impairment. 178 

 179 

Independent paired t-tests showed no significant group differences for age [t(44) = 0.95, 180 

p=0.34] or full-scale IQ [t(40) = -0.40, p=0.69]. Among various sub-domains of the 181 

Wechsler Intelligence test, only one domain, the processing speed index (PSI), showed 182 

a significant group difference [t(30) = 7.59, p<0.01] revealing that autism group was 183 

slower in processing information. As expected, the autism group had higher SRS-2 184 

scores than the comparison group [t(33) = -8.48, p<0.01], as well as on each of the 185 

SRS-2 sub-domains.  186 

 187 

Sequential Probabilistic Task 188 

We designed a task to probe the ability to adjust prediction certainty based on changing 189 

probabilities in the environment.  190 

 191 



 

7 
 

Stimuli: Visual stimuli were presented to the participant, one at a time, on a computer 192 

screen at a viewing distance of 65 cm in a dimly lit room. Stimuli consisted of basic 193 

shapes presented in gray on a black background for 100 ms, with an 850 ms inter-194 

stimulus interval (ISI). Participants performed a target detection task in which they 195 

responded as quickly as possible to the final item of a target-sequence. A target-196 

sequence was either three arrows, the first upward-facing, the second rightward-facing, 197 

and the final downward-facing, or three parallelograms, the first left-tilted, the second 198 

straight, and the final right-tilted. The stimuli in these sequences are referred to as cue1, 199 

cue2, and target (Fig. 1A). When patterns were not completed, a circle, diamond, or 200 

triangle shape was presented instead, which we refer to as an invalid item. These 201 

shapes were also used as fillers, represented once or twice after invalid items or 202 

targets. To ensure that participants were responding to the shape sequence and not just 203 

the final shape in the sequence, catch trials in which the final shape was presented after 204 

filler shapes were also included.  205 

 206 

Cue validity conditions: Throughout the experiment, the probability that a target-207 

sequence was completed varied across four levels, in ~10-minute blocks (Fig. 1C). 208 

Pattern initiations, always represented by cue1 of the pattern followed by cue2, were 209 

completed with the target stimulus 100%, 84%, 67% or 33% of the time, comprising four 210 

cue validity conditions (Fig. 1A). Participants were not informed of the cue validity 211 

condition they were in or when it changed. The two target-sequences were presented 212 

with equal probability within a given cue validity condition. 213 

 214 

Blocks: Stimuli were presented in mini-blocks of ~1.5 minutes, separated by pauses 215 

during which time participants could rest. Each mini-block was composed of 24 pattern 216 

initiations (cue1 followed by cue2) (see Table S1 for more). Pattern initiations were 217 

completed with the target 24, 20, 16, or 8 times depending on the cue validity condition. 218 

Participants pressed the mouse key to initiate the next mini-block. Blocks of a given cue 219 

validity condition were composed of between 4 and 6 mini-blocks.  220 

 221 
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Instructions Part 1: The following instructions were printed on the screen in four parts, 222 

both for remote familiarization and the first experimental session:  223 

“You will see a shape in the middle of the screen. The shape will change about 224 

every second. Sometimes 3 consecutive shapes appear in the orders below, 225 

which we call a pattern. There are two target patterns: (pattern shapes were 226 

shown to the participant below this sentence). Your job is to touch the screen (or 227 

press the mouse button) after Pattern 1 or Pattern 2 is completed. Try to be both 228 

quick and accurate. Remember, you should respond after the pattern is 229 

completed. You can ignore any other shape. Let’s practice!” 230 

 231 

Remote Familiarization: To briefly familiarize participants with the stimuli and task prior 232 

to the experiment, we remotely presented the task (100% cue validity condition only) for 233 

six minutes using the Neurobehavioral Systems mobile app on their smart phone or 234 

tablet, one day before the experiment.  235 

 236 

Experiment sessions: The experiment was composed of four sessions performed on a 237 

single day, separated by 15-30 minute breaks (Fig. 1C). In Sessions 1 and 2, the cue 238 

validity conditions were presented in the same order to all participants, whereas in 239 

Sessions 3 and 4, cue validity condition order was pseudo-randomized. Session 1 240 

consisted of 7 mini-blocks of 100% cue validity condition. In Session 2, conditions were 241 

presented in the order of 84%, 67%, 33%, and 100%. Participants usually took a lunch 242 

break after Session 2, while taking a ~15-minute break between Session 3 and Session 243 

4. In Sessions 3 and 4, cue validity conditions were presented in a pseudo-randomized 244 

order (sample order is shown in Fig. 1B). The initial 100% condition, presented during 245 

remote familiarization and Session 1, was designed to establish strong cue-outcome 246 

associations. This might correspond to never-broken rules that individuals with autism 247 

seek in adhering to strict routines in their everyday life.  248 

 249 

Instructions Part 2: At the end of the first session, participants were informed that going 250 

forward, the cues would not always be followed by the target, and that in these cases 251 

they should withhold their response. 252 
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 253 

          254 
FIGURE 1: The Sequential Probabilistic Task (A) Participants respond to target sequences of stimuli 255 
while the probability of sequence completion is manipulated at four levels. Stimuli consist of basic shapes 256 
presented sequentially to the participant. The two possible target sequences: A sequence of 3 different 257 
arrows or 3 different parallelogram shapes are presented in specific orders. The participant’s task is to 258 
respond after sequence completion with a mouse click while withholding the response when the 259 
sequence is completed with an invalid item. (B) A sample stimulus stream. The subject responds with a 260 
mouse click after completion of a three item target pattern, followed by a feedback message appearing on 261 
the screen. (C) The order of cue validity conditions throughout the experiment is shown for a sample 262 
participant. (D) Conceptual illustration of the temporal dynamics of evoked responses of interest: CNV 263 
and P3. 264 
 265 

266 
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Feedback: To keep the participant on-task, visual feedback was provided: “correct” for 267 

responses to targets that fell within the response window of 100 to 950 ms; “miss” if 268 

they did not respond within 950 ms of the target; “too early” for responses occurring 269 

within 100 ms of target presentation (assumed to be anticipatory); and “wrong” for 270 

responses to a non-target. Feedback text was accompanied by an icon (a “✓” for 271 

correct, “x” for wrong, “!” for miss or too early). The feedback stimulus was presented for 272 

200 ms. 273 

 274 
EEG data collection and pre-processing  275 
 276 

Continuous EEG was recorded from 160 scalp electrodes at a rate of 512 Hz using the 277 

BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, Netherlands). Biosemi replaces 278 

the ground electrodes that are used in conventional EEG systems with two separate 279 

electrodes: Common Mode Sense (CMS) and Driven Right Leg (DRL) passive 280 

electrodes. These two electrodes create a feedback loop, thus rendering 281 

them as references. Data were down-sampled to 128 Hz for subsequent analyses, to 282 

reduce computing demands. EEG data were pre-processed using Matlab and eeglab 283 

(Delorme & Makeig, 2004) on local computers or remote cluster computing via 284 

Neuroscience Gateway (Sivagnanam et al., 2013). Data were high-pass filtered at 0.75 285 

Hz. The 60 Hz line noise was removed using the CleanLine function of eeglab, run twice 286 

with a window and step size of four. Channels that were two standard deviations away 287 

from the average power spectrum in the 0.1-50 frequency band were rejected.  288 

 289 

Infomax Independent Component Analysis (ICA) was used to remove potential non-290 

brain related activity, mainly eye-movement-related muscle artifacts. For each 291 

Independent Component (IC), the iclabel program (Pion-Tonachini et al., 2019) was 292 

used to calculate the probabilities for that IC belonging to the seven different IC 293 

categories including Brain, Muscle Noise, Eye Noise, Heart Noise, Line Noise, Channel 294 

Noise, and Other. A total noise metric was created via summation of muscle-, eye-, 295 

heart-, line-, and channel-related noise probabilities. An IC was excluded only if it met 296 

both of the following criteria: 1) had more than a 50% chance for the noise category, 2) 297 

had less than a 5% chance of the brain category. This led to an average of 5 ICs being 298 
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rejected among the top 20 ICs (i.e., the ICs that accounted for the majority of the 299 

signal). Three of these on average had more than a 50% chance of being a component 300 

related to eye blinks or movements. The channels that were rejected prior to ICA were 301 

interpolated using the linear interpolation method. After referencing data to the average 302 

of two scalp channels that are near the right and left mastoids (i.e., E17 and B18 on 303 

BioSemi 160 System). For P3 analyses data were epoched between -100 and 950 ms 304 

with respect to stimulus onset, with the first 100 ms of the epoch serving as baseline. 305 

For the CNV analyses data were epoched between -100 and 950 ms with respect to the 306 

second cue, with the first 100 ms serving as baseline. Noisy trials were rejected based 307 

on a custom script that rejects trials with amplitudes that are more than three standard 308 

deviations away from the mean of maximum global field power amplitudes for each trial 309 

type. After that, trials were averaged for each stimulus type. 310 

 311 

Data analyses  312 

 313 

EEG, reaction time, accuracy, and clinical data were analyzed in Matlab and Python 314 

using custom libraries and scripts. We assessed the effect of cue validity on two ERPs 315 

relevant to predictive processing: the CNV to index anticipation of upcoming targets and 316 

the P3 to index target evaluation. Selection of the temporal windows and scalp regions 317 

used for the analysis of each of these components was informed by the literature and 318 

modified if needed based on inspection of the specific timing and topography of the 319 

response of interest, without regard for experimental condition or group. The CNV was 320 

measured as the average amplitude over the 100 ms window preceding the onset of the 321 

imperative stimulus (the target or the invalid item), from a centrally placed electrode 322 

(one anterior to the classic Cz location) (Thillay et al., 2016). The P3 was measured as 323 

the average amplitude between 250-450 ms (+/-100 ms from the 350 ms peak) at Pz 324 

(Polich, 2007).  For behavioral analyses, RT, percent hits, and false alarms were 325 

calculated for each participant for each cue validity condition, and subsequently 326 

averaged per participant group. In our tasks, in line with prior work, RT was expected to 327 

be faster with increasing cue validity across conditions (Lawson et al., 2014; Thillay et 328 

al., 2016). 329 
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To test the influence of cue validity on the ERP components of interest, we applied 330 

single trial linear mixed-effects models using the statsmodel package in Python 331 

(Seabold & Perktold, 2010). Models were fit using a maximum likelihood criterion 332 

defining subjects as a random factor. ERP amplitudes were numeric dependent 333 

variables. Group was a dummy-coded fixed factor. To test for the presence of significant 334 

linear relationships between cue validity and ERP amplitude, two sided linear least-335 

squares regression analyses between cue validity and ERP amplitude was performed 336 

for both the P3 and the CNV for each group. For the linear regression analysis, data 337 

from the 84%, 67% and 33% conditions were normalized to the 100% condition.  The 338 

same analysis on the unnormalized data are also presented, as supplementary data. 339 

 340 

To test the hypothesis that flexibility in certainty of predictions relates to social 341 

responsiveness, we conducted correlation analyses between clinical scores and our 342 

primary EEG measures. We took the difference between 84% and 33% conditions as 343 

an index of a participants’ ability to differentiate between different cue validity conditions 344 

(e.g., prediction flexibility index). We then performed Pearson’s correlation between this 345 

index and social responsiveness (as measured by SRS-2). This analysis was performed 346 

on the full dataset across the two groups of participants to increase statistical power 347 

(Bonett & Wright, 2000; David, 1938). Acknowledging that group differences can drive a 348 

correlation, however, for significant regressions we also plotted regression fits for each 349 

group separately in the corresponding figure, to aid in interpretation of the regression 350 

results. 351 

 352 

RESULTS 353 

  354 

We designed a sequential probabilistic task where participants responded to the 355 

completion of three sequentially presented shapes (e.g., three arrows, the first upward-356 

facing, the second right-facing, and the final downward-facing; aka cue1, cue2 and 357 

target) while parametrically manipulating sequence completion at four levels: 100%, 358 

84%, 67%, and 33%. The effects of cue validity condition and autism diagnosis on brain 359 

responses and behavior were examined to understand how well different levels of 360 
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prediction certainty and stimulus probability are represented in the brains of individuals 361 

with autism, and the consequences for behavior. 362 

 363 

Electrophysiological data 364 

 365 

To assess if brain potentials reliably modulate as a function of cue validity and whether 366 

this significantly differs by group, we performed two separate linear mixed effect models 367 

for CNV and P3. ERP amplitudes were best fit by a linear mixed effect model by 368 

including an interaction term between group (control and autism) and cue validity 369 

(100%, 84%, 67%, 33%). Post-hoc mixed models were conducted for each potential 370 

pairwise comparison (100-84%, 100-67%, 100-33%, 84-67%, 84-33%, 67-33%) to 371 

unpackage significant main effects and group-by-condition interactions. Results are 372 

reported below and summarized in Table 1 (and see supplementary Table 2).  373 

  374 

CNV: In both the autism and control groups, a CNV was observed just prior to onset of 375 

the imperative stimulus (target or invalid item). The CNV, which had a central negativity, 376 

was most prominent in the 100 ms prior to target onset (Fig. 2A, S2). In the control 377 

group, CNV amplitude was bigger (more negative going) as cue validity decreased. This 378 

amplitude/cue validity relationship is in line with prior work in healthy adults on 379 

anticipation of implicitly learned probabilistic regularities (Kóbor et al., 2021). In contrast, 380 

in the autism group, while CNV amplitude clearly segregated the three less predictable 381 

conditions (i.e., 84%, 67%, 33%) from the 100% condition, differences among these 382 

three conditions were greatly reduced compared to the control group (Fig. 2). Statistical 383 

testing of the data revealed a significant effect of condition (ß=1.54, SE=0.18, p<0.01) 384 

and a group-by-condition interaction (ß=-0.64, SE=0.26, p=0.01) (Table 2). Follow-up 385 

tests revealed that this interaction was driven by a smaller difference between the 33% 386 

condition and each of the other conditions in the autism group, in addition to revealing a 387 

significant main effect of group for the 100%-84% comparison due to a larger difference 388 

in autism (Table S2). Linear least-squares regression between cue validity and ERP 389 

amplitude showed that CNV amplitude was significantly more negative as cue validity 390 
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decreased for the control group, (ß(60)=2.26 ± 0.74, p=0.003) but not for the autism 391 

group (ß(57)=0.75 ± 0.88, p=0.40) (Fig. 2B, also see Fig. S1). 392 

 393 

 394 

FIGURE 2: CNV (A) ERP waveforms showing responses timelocked to cue2 at Cz for each of the cue 395 
validity conditions. The CNV time window is highlighted in green (100 ms prior to target onset). (B) CNV 396 
amplitudes across 84%, 67%, 33% conditions normalized for the 100% condition, dotted line showing 397 
linear regression between cue validity and CNV amplitude based on individual subject data points. While 398 
the x axis shows evenly spaced tick labels from 33% to 84%, there was no 50% cue validity condition in 399 
the design. Error bars show 95% confidence intervals. Slopes of the linear regression lines are shown on 400 
top of plots.  (C) Pearson’s correlation between SRS-2 Scores and CNV difference between 33% and 401 
84% conditions across all participants (gray). Regression lines are also shown for each group (orange: 402 
autism, blue: controls). (D) CNV topographies for 84% condition (left), difference between 33% and 84% 403 
conditions (middle), and difference between 84% and 100% conditions (right).  404 
** denotes p <0.01. 405 

 406 

P3: Both groups exhibited a typical P3 in response to target stimuli that was positive-407 

going over posterior-central scalp and peaked at about 350 ms. In both groups, the 408 

amplitude of the P3 varied as a function of cue validity (Fig. 3A-B, S1, S2) such that 409 

higher cue-validity conditions yielded larger P3 amplitudes. The P3 statistical model 410 

revealed a significant effect of condition (ß=-3.19, SE=0.21, p<0.01), while showing no 411 
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main effect of group (ß=-0.43, SE=9.02, p=0.96) or group-by-condition interaction 412 

(ß=0.14, SE=0.30, p=0.65) (Table 1). Linear regression analyses between P3 and cue 413 

validity revealed that P3 amplitude was significantly more positive as cue validity 414 

decreased for both the control (ß(60)=-5.44 ± 0.98, p=0.00000072)  and autism (ß(57)=-415 

3.19 ± 1.18, p=0.009) groups (Fig. 3B, S1). 416 

 417 

 418 
 419 
FIGURE 3: P3 (A) Target-locked ERPs at Pz. P3 time window highlighted by green panel. (B) P3 420 
amplitudes across 84%, 67%, 33% conditions normalized for the 100% condition, error bars showing 95% 421 
confidence intervals. While the x axis shows evenly spaced tick labels from 33% to 84%, there was no 422 
50% cue validity condition in the design. The dotted line shows the linear regression between cue validity 423 
and P3 amplitude. Slopes of the linear regression lines are shown on top of plots along with their 424 
statistical significance (* for p<0.05, ** for p <0.01). (C) Pearson’s correlation between SRS-2 Scores and 425 
P3 difference between 33% and 84% conditions across all participants (gray). Regression lines are also 426 
shown for each group (orange: autism, blue: controls). (D) P3 topographies for the 84% condition (left) 427 
and P3 difference topographies between 84% and 33% conditions (right) are included for each group.  428 
* denotes p<0.05 and ** p <0.01. 429 
 430 
Behavioral Results  431 

 432 

Mean RT collapsed across the four cue validity conditions was 330 and 349 ms, 433 

respectively, for the control and autism groups. Considering the individual cue validity 434 

conditions for both groups, mean RTs were fastest for the highest cue validity condition 435 
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and slowest for the lowest. For the control group these RT differences scaled with cue 436 

validity, increasing by ~20 ms as cue validity decreased (309, 325, 351, and 373 ms for 437 

the highest to lowest cue validity conditions respectively). For the autism group 438 

however, although mean RT changed between the highest and lowest cue validity 439 

conditions, it did not differ between the 84% and 67% conditions (335, 354, 354, 385 ms 440 

for the highest to lowest cue validity conditions respectively) (Fig. 4A). A linear mixed 441 

effect model for RT with an interaction term between group and cue validity condition 442 

revealed both a significant effect of condition (ß=-96.37, SE=4.23, p<0.01) and a group-443 

by-condition interaction (ß=-34.43, SE=6.10, p<0.01) while showing no main effect of 444 

group (ß=-6.43, SE=183.55, p=0.97) (Table 2). Follow-up mixed-model tests revealed 445 

that the condition effect was driven by all pairwise comparisons between cue validity 446 

conditions, and the group-by-condition interaction by significantly smaller differences in 447 

mean RTs in the autism group for the 100%-67%, 84%-67%, 84%-33% and 100%-33% 448 

condition pairs, (Table S3). Thus, cue validity effects on RT were significantly smaller in 449 

the autism compared to the control group. 450 

 451 

 452 
FIGURE 4: Reaction Time and Performance. (A) RTs in ms for the four cue validity conditions for 453 
control (left) and autism (bottom) groups. (B) Percent hit rate by cue validity condition. Dots that are 454 
connected by lines show averages. Each stand-alone dot represents an individual subject.   455 
 456 
 457 

We examined the relationship between our neural and RT measures of flexibility in 458 

certainty of predictions (flexibility index: difference between 33% and 84% conditions) 459 

and SRS scores. These analyses were performed on a subset of the data due to 460 

missing SRS scores from 10 participants (5 each from the control and autism groups). 461 
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We found significant correlations for the CNV (r(28) = 0.46, p = 0.007) (Fig. 2C) and P3 462 

(r(28) = -0.32, p = 0.049) (Fig. 3C), whereas no significant correlation was found for RT 463 

(r(28) = -0.14, p = 0.22). Regression lines for each of the groups, which given the small 464 

Ns should be considered purely descriptive, suggest that in both cases the significant 465 

correlations may have been driven by the control data. Both groups performed the task 466 

with high accuracy (96% and 93% respectively for control and autism groups; see Fig. 467 

4B). Mean hit rate to targets for the control group was more than 97% in the three 468 

highest cue validity conditions, and 94% for the lowest cue validity condition. For the 469 

autism group, hit rates decreased as cue validity decreased, from 95% to 92%. 470 

Statistical analyses revealed a main effect of condition (ß=0.02, SE<0.01, p<0.01) and a 471 

group-by-condition interaction (ß=0.02, SE<0.01, p=0.03; see Table S4).   472 

 473 

TABLE 2: Mixed Model Results for CNV, P3, and RT. Group (Grp) = autism and neurotypical; 474 
Condition (Con) = cue validity condition; 100%, 84%, 67%, 33%). 475 
 476 

 Coefficient SE z P 

CNV     

Intercept -2.7 7.77 -0.35 0.73 

Condition effect 1.54 0.18 8.69 <0.01 

Group effect  1.38 10.99 0.13 0.9 

Con:Grp Interaction -0.64 0.26 -2.5 0.01 

P3     

Intercept 4.2 6.38 0.66 0.51 

Condition effect -3.19 0.21 -15.43 <0.01 

Group effect  -0.43 9.02 -0.05 0.96 

Con:Grp Interaction 0.14 0.3 0.46 0.65 

  RT 477 
Intercept 399.55 129.23 3.09 <0.01 

Condition effect -96.38 4.23 -22.76 <0.01 

Group effect  -6.43 183.55 -0.03 0.97 

Con:Grp Interaction 34.43 6.10 5.63 <0.01 
 478 
 479 

 480 
  481 
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DISCUSSION 482 
 483 

We investigated how young adults with and without autism adjust prediction certainty, a 484 

central feature of predictive processing, upon parametric manipulation of cue validity 485 

ranging from 33% to 100%. Distinct brain responses served to index the anticipation of 486 

temporally predictable targets (CNV) and the evaluation and registration of target events 487 

(P3). Whereas the control group showed graded modulation of these brain responses 488 

and RT that was proportional to the level of cue validity (predictability), this pattern was 489 

not uniformly evident in the autism group. In particular, for the CNV, there was a 490 

pronounced difference between the fully predictable condition (100% cue validity) and 491 

the less predictable conditions, whereas differences among the three less predictable 492 

conditions were substantially reduced (Fig. 2). The relatively outsized responses to 493 

small deviations from what is expected (i.e., the response difference between 84%-494 

100% conditions) arguably mirrors the insistence on sameness phenotype, in which 495 

even small deviations from expectation cause distress and rules and routines are 496 

perpetually sought.  On the other hand, reduced differences between the three 497 

conditions in which predictions were violated (84%, 67% and 33%) points to the 498 

possibility that prediction certainty is more categorical (certain and uncertain) in autism 499 

whereas it is more graded in controls. These CNV data suggest that autistic individuals 500 

do not modulate certainty of their predictions based on changes in cue validity in the 501 

same highly flexible manner as do controls.   502 

 503 

The behavioral data also supported altered cue validity effects in autism. Whereas 504 

mean RT followed the expected pattern in the control group such that responses were 505 

faster when cue validity was higher and slower when it was lower (Fig. 4), in the autism 506 

group mean RT differences between adjacent conditions were significantly smaller for 507 

all comparisons except for the 100% vs 84% comparison (Table S3), and the two 508 

intermediate conditions (84 and 67%) did not differ in mean RT value at all.  In contrast, 509 

the target P3 systematically modulated by cue validity not only in the control group but 510 

also in the autism group (Fig. 3), aligning with studies showing that autistic individuals 511 

represent stimulus statistics in a typical manner (Cannon et al., 2021; Knight et al., 512 
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2020; Manning et al., 2017). Taken all together, relatively intact P3 modulation 513 

combined with impaired CNV and RT modulation suggests that while stimulus statistics 514 

are calculated, the application of this information to modulate prediction certainty and 515 

influence downstream behavior is impaired.  516 

 517 

These data appear to fit well with the theory of Highly Inflexible and Precise Prediction 518 

Errors in Autism (HIPPEA) proposed by Van de Cruys and colleagues (Van de Cruys et 519 

al., 2014). This theory posits that under volatile conditions a uniformly high level of 520 

precision is assigned to prediction errors in autism, by which even little variances in the 521 

environment will induce an update in the predictive model; this in turn leads to overfitted 522 

models, as even insignificant details/changes are considered important and reacted to, 523 

rather than being disregarded. Thus, with more precise prediction errors, even small 524 

changes evoke a large response, much as we see in the CNV for the autism group (i.e., 525 

84% versus 100%). This uniformly applied high precision could also account for the 526 

impaired differentiation among the different levels of uncertainty that we observed in our 527 

CNV data where the differentiation between lowest three cue validity conditions (84%, 528 

67%, 33%) was reduced in the autism group.  529 

 530 

Bearing in mind that many processes lie between any given brain measure and the 531 

variables that make up a clinical or cognitive score, of interest is whether and how these 532 

electrophysiological and behavioral indices of flexibility of prediction certainty map onto 533 

the autism phenotype. To begin to address this question we focused on SRS scores, 534 

which provide a continuous measure of characteristics associated with the autism 535 

phenotype in the broader population as well as in autism (Constantino & Gruber, 2012). 536 

As one might expect, we found that greater flexibility of predictive processing (a larger 537 

CNV differential between 33 and 84% conditions) was associated with greater social 538 

responsiveness (lower SRS scores). However, looking at the regression lines for control 539 

and autism groups separately (Fig. 2C & 3C), it appears that this relationship may have 540 

been driven by trends in the control group.  Clearly the participant numbers in the 541 

individual group regression analyses are inadequate and further investigation in larger 542 
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samples is needed to assess the reliability of this relationship in the general population 543 

and the nature of this relationship in autism.  544 

 545 

While our approach cannot identify the precise neural locus of disrupted processing, 546 

prior studies suggest several cortical/subcortical regions that contribute to CNV 547 

generation and the modulation of prediction certainty. For example, the anterior 548 

cingulate cortex (ACC) monitors the likelihood of events (Brown & Braver, 2005), has 549 

been highlighted in probabilistic tasks in human functional imaging studies (Agam et al., 550 

2010; O'Reilly et al., 2013) as well as animal studies (Kennerley et al., 2006; Kolling et 551 

al., 2016; Stolyarova et al., 2019), and is thought to contribute to the CNV response 552 

(Gómez et al., 2003; Mulert et al., 2004; Nagai et al., 2004). The thalamus has also 553 

been implicated in the representation of precision in the context of predictive models 554 

(Kanai et al., 2015), and has been shown to contribute to trial-by-trial modulation of 555 

CNV amplitude (Nagai et al., 2004). Likewise, the prefrontal cortex is implicated in the 556 

representation of basic and more abstract prediction errors (Alexander & Brown, 2018; 557 

Zarr & Brown, 2016), and contributes to the CNV response (Gómez et al., 2007; Gómez 558 

et al., 2003; Mulert et al., 2004; Scheibe et al., 2010). Compellingly, activity in all of 559 

these brain regions has been shown to differ in autism (Balsters et al., 2016; Di Martino 560 

et al., 2009; Solomon et al., 2015; Tomasi & Volkow, 2019).  561 

 562 

The current results suggest that the CNV may be a powerful biomarker of altered 563 

representation of prediction certainty in autism.  This belies the question of its potential 564 

as a diagnostic biomarker.  To this end it will necessary to assess at-risk populations 565 

(e.g., siblings of individuals diagnosed with autism) before the emergence of autism 566 

symptomatology, during infancy/early childhood (<2 years of age; e.g., see (Constantino 567 

et al., 2021)). For this, robust experimental assays of altered predictive processing for 568 

administration to very young children are needed. Promisingly, recent work reported 569 

anticipatory processes similar to the CNV in infants as young as 4 months of age, in 570 

response to a voice cue to an upcoming face (Mento et al., 2022). 571 

 572 
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To conclude, the findings from the current study contribute to our understanding of 573 

altered predictive processing in autism by revealing that representation of prediction 574 

certainty in this population is overly circumscribed, such that situations are anticipated 575 

to be predictable or unpredictable, with very little in-between.  As such, cognitive-576 

behavioral therapies directed at teaching individuals to form and apply more nuanced 577 

representations of probabilistic relationships when navigating their everyday life may be 578 

useful for individuals with autism.  The CNV data, furthermore, suggest a potential 579 

neuromarker of the representation of prediction certainty.  Finally, our study suggests 580 

that inclusion of a 100% cue validity condition, which is usually absent in studies on the 581 

representation of uncertainty in autism, provides an essential baseline when assessing 582 

magnitude of uncertainty effects in clinical groups. Future work will be needed to 583 

determine if these findings are specific to environments where cue-target contingencies 584 

change over relatively short periods of time and must be learned implicitly, as in the 585 

present study, or if they represent a more generalized mode of operation whereby 586 

prediction certainty is represented in a more binary manner across a broad range of 587 

circumstances in autism.   588 

 589 
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