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Abstract— Neuroimaging research has demonstrated that 

observing visual speech in the absence of auditory speech 

activates primary auditory cortex. However, it remains unclear 

what this activation precisely reflects. It is well established that, 

during continuous auditory speech, neural activity in auditory 

cortex tracks the temporal envelope of the speech signal. 

Recently, it has been suggested that this process may in fact 

reflect an internal synthesis of the speech stream rather than 

the encoding of the envelope per se. Could silent lipreading 

therefore elicit a similar “entrainment” to the envelope in the 

absence of auditory speech? Here, we test this hypothesis by 

examining the impact of lipreading accuracy on envelope 

tracking using electroencephalography (EEG). We provide 

evidence to suggest that the EEG response over left temporal 

scalp tracks the unheard speech more faithfully during 

accurate lipreading. We also demonstrate that the envelope can 

be reconstructed from EEG data recorded during silent 

lipreading with accuracy above chance level. This could have 

implications for brain-computer interface technology. 

I. INTRODUCTION 

Viewing a speaker’s lip movements (lipreading) greatly 
enhances speech perception [1]. Neuroimaging research has 
sought to identify the stage of processing at which visual and 
auditory information interacts. Using functional magnetic 
resonance imaging (fMRI), it has been demonstrated that 
silent lipreading activates primary auditory cortex [2]. While 
fMRI has furthered our understanding of multisensory 
integration, it is not well suited to examining the nature of 
rapidly modulating cortical activity over time. This task is 
better suited to methods with higher temporal resolution such 
as electro- and magneto-encephalography (EEG/MEG). Such 
techniques have reliably shown that auditory cortical activity 
tracks the envelope of acoustic speech [3]. Recently, Ding et 
al. [4] demonstrated that this process may instead reflect an 
analysis-by-synthesis mechanism, whereby speech features 
that are correlated with the envelope are encoded during the 
synthesis phase, thus leading to envelope tracking. Many 
visual cues involved in lipreading are also correlated with the 
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acoustic envelope [5]. Encoding of such features could 
therefore manifest in a process that also aligns with the 
speech envelope. Here, we test this hypothesis by examining 
the impact of lipreading accuracy on the entrainment of EEG 
to the unheard speech. 

Work by O’Sullivan et al. [6] has demonstrated that it is 
possible to reconstruct an estimate of the speech envelope 
from EEG data. While this work has distinct applications in 
brain-computer interface (BCI) technology, such methods 
would better serve BCIs by decoding the users’ inner 
thoughts, i.e., covert speech. Such an approach presents two 
main challenges: (1) how do we model the neural 
representation of an internal process, and (2) how do we 
determine the exact time at which it occurred? Recently, 
Martin et al. [7] successfully decoded covert speech from 
electrocorticography (ECoG) data using a decoder that 
modelled the neural representation of overt speech, while 
timing issues were dealt with using dynamic time warping. In 
this study, we demonstrate how the natural statistics of visual 
speech can be utilized to overcome these issues: (1) assuming 
that speech perception and imagery share a partially 
overlapping cortical representation, the original acoustic 
signal can be used as an estimate of what the perceiver 
imagined, and (2) timing issues are naturally circumvented 
because the perceiver is continually prompted to imagine the 
speech time-locked to the visual stimulus. Here, we apply the 
method of stimulus reconstruction as a quantitative measure 
of envelope tracking in EEG during silent lipreading. 

II. METHODS 

A. Subjects 

Twelve native English speakers (5 females; age range: 
22–37 years), none of which were trained lipreaders, gave 
written informed consent. All subjects were right-handed, 
free of neurological diseases, had normal hearing and normal 
or corrected-to-normal vision. The experiment was 
undertaken in accordance with the Declaration of Helsinki 
and was approved by the Ethics Committee of the Health 
Sciences Faculty at Trinity College Dublin, Ireland.  

B. Stimuli and Procedure 

The stimuli were drawn from a collection of videos 
featuring a male speaker reciting fluent American English 
sentences. Fifteen 60-s videos were rendered into 1280 × 
720-pixel movies at a fame rate of 30 FPS in VideoPad 
Video Editor (NCH Software). Soundtracks were deleted 
from 14 of the 15 videos used for silent lipreading. The 
remaining video was preserved in audiovisual (AV) format 
and used as a control. The soundtrack was sampled at 48 kHz 
with 16-bit resolution. It was compressed in Audacity Audio 
Editor to amplify lower intensities and thus boost the signal-
to-noise ratio (SNR) of the neural response during testing. 
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Stimulus presentation was controlled using software by 
Presentation (Neurobehavioral Systems) and delivered using 
a 19-inch CRT monitor and Sennheiser HD650 headphones. 
Prior to EEG testing, subjects were trained on the AV 
stimulus to ensure familiarity with the speech content. During 
EEG testing, the same AV stimulus was presented 14 times 
as a control. This known video (Vk) was also presented in 
visual-only format 14 times, for which subjects were 
instructed to lipread. The remaining 14 unknown videos (Vu) 
were presented once each in visual-only format. Subjects 
were instructed to lipread the Vu stimuli even though they 
were not familiar with the audio content. Stimulus 
presentation order was randomized across conditions within 
subjects. During each 60-s trial, subjects were required to 
respond to a target word with a button press. A different set 
of target words was used for each condition and the 
assignment of target words was counterbalanced across 
subjects. Each target word occurred between 1 and 3 times 
per trial and there were 28 targets in total per condition. 

C. EEG Acquisition and Pre-processing 

EEG was recorded at 130 locations (128 scalp and left 
and right mastoids) using an ActiveTwo system (BioSemi). 
Triggers indicating the start of each trial were sent using an 
Arduino Uno microcontroller which detected an audio click 
at the start of each soundtrack. The data were low-pass 
filtered online below 134 Hz and digitized at a rate of 512 
Hz. Subsequent pre-processing was conducted offline in 
MATLAB (MathWorks); the data were band-pass filtered 
between 1 and 25 Hz and re-referenced to the average of the 
mastoid channels. The time series were visually inspected in 
Cartool (brainmapping.unige.ch/cartool) to identify channels 
with excessive noise. Channels contaminated by noise were 
recalculated by spline-interpolating the surrounding clean 
channels in EEGLAB [8]. 

D. Temporal Response Function Estimation 

To examine the relationship between the neural response 
and the presented stimulus, we calculated the temporal 
response function (TRF) for each of the three conditions [3]. 
A TRF can be interpreted as a filter, W, that describes the 
brain’s linear transformation of the speech envelope to the 
continuous neural response at each channel location. Speech 
envelopes were extracted using a Hilbert Transform, filtered 
below 25 Hz and downsampled to 512 Hz. For each 60-s 
trial, TRFs were calculated between time lags from −100 to 
400 ms using the following ridge regression: 

                          RSMSSW T1T 
                           (1) 

where S is a matrix of the lagged time series of the speech 
envelope, R is a matrix of all 128 channels of neural 
response data, M is the regularization term used to prevent 
overfitting and λ is the ridge parameter, empirically chosen 
to preserve component amplitude (see [3] for further details).  

E. Stimulus Reconstruction 

To obtain a cortical measure of stimulus encoding, we 
determined the fidelity with which we could reconstruct the 
speech envelope from the neural data [9]. For each 60-s trial, 
we calculated the decoder, G, which represents the mapping 
from the neural response at all channel back to the stimulus. 

The data were downsampled to 64 Hz and the decoders were 
fit with time lags from −500 to 0 ms as follows: 

                            SRIRRG T1T 
                            (2) 

where R is a matrix of the lagged EEG data, S is the speech 
envelope and I is the identity matrix. For each subject, a 
leave-one-out cross validation was performed to reconstruct 
an estimate of each of the 14 stimuli per condition. 
Specifically, each estimate was obtained by convolving the 
neural data corresponding to the test trial with the average of 
the 13 decoders allocated for training as follows: 

                                   GRS ˆ                                      (3) 

where Ŝ  is the estimated speech envelope, G  is the mean 

of the training decoders and R is the lagged test EEG data. 
Reconstruction accuracy was measured by performing a 
Pearson’s correlation on the estimated and original 
envelopes. For each subject, we conducted a separate search 
of λ over the range 2

10
, 2

11
,…, 2

30
 such that it optimized 

reconstruction accuracy within each condition. The λ-value 
with the highest mean reconstruction accuracy over the 14 
trials was chosen to prevent overfitting. However, in the AV 
and Vk conditions, the same stimulus was repeated over the 
14 trials which may have caused overfitting. An additional 
analysis was thus included which removed any potential bias 
by averaging the decoders across subjects, within trials [6]. 

All statistical analyses were conducted using one-way 
repeated measures ANOVAs and Greenhouse-Geisser 
correction was applied where necessary. Post hoc 
comparisons were made using two-tailed paired t-tests, 
except where otherwise stated. 

III. RESULTS 

A. Behavior 

Twelve subjects performed a target detection task during 
EEG recording. Reaction times (RTs) were measured from 
the onset of auditory voicing and hits were counted for 
responses that were made 200–2000 ms after target onset. 
Condition had a significant impact on both hit rate (F(2,22) = 
76.2, p < 0.001; Fig. 1A) and RT (F(1.3,14.7) = 24.2, p < 0.001; 
Fig. 1B). Planned comparisons showed that subjects were 
significantly more accurate for Vk (74 ± 11%, mean ± SD) 
compared to Vu (33 ± 15%; t(11) = 9.2, p < 0.001) and that 
RTs were faster for Vk (532 ± 123 ms) relative to Vu (787 ± 
150 ms; t(11) = 7.0, p < 0.001). 

 

Figure 1.  Behavioral performance. A, Mean hit rates for AV, Vk and Vu 

speech. B, Mean reaction times for all three conditions. Error bars indicate 

SEM across subjects. Brackets indicate pairwise statisitcal comparisons   
(*p < 0.05, **p < 0.01, ***p < 0.001, NS = not significant). 
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B. Spatiotemporal Representation of Speech 

The EEG TRF [3] contains two major response 
components: a negativity at ~80 ms (N1TRF) and positivity at 
~130 ms (P2TRF; Fig. 2A). Fig. 2B shows the topography of 
the N1TRF (left) and P2TRF (right) components. TRF SNR 
was defined as 0 to 250 ms (signal) and −100 to 0 ms 
(noise). Over fronto-temporal scalp, SNR was significantly 
lower for Vk (1.3 ± 1 dB, mean ± SEM) and Vu (0.45 ± 1 
dB) compared to AV (6.5 ± 1.9 dB; F(2,22) = 4.9, p < 0.05; 
Fig. 2A, top) but was similar for all three over occipital scalp 
(F(2,22) = 0.07, p > 0.05; Fig. 2A, bottom). This is reflected in 
the statistical cluster maps (Fig. 2C) which show significant 
activation across subjects between 100–200 ms over parieto-
occipital scalp in all three conditions and also over fronto-
temporal scalp in the AV condition (Fig. 2C, top; p < 0.05). 

To compare the responses of the visual conditions (Vk 
and Vu) to those of the control condition (AV), a series of 
Pearson’s correlations were performed on their TRFs (0–250 
ms). Fig. 3 shows the correlation coefficient (r) at each 
channel location. Channels where r is significantly greater 
than zero across subjects are indicated by black markers (p < 
0.05). The comparison between Vk and Vu revealed a 
significant cluster of channels over occipital scalp (Fig. 3, 
right). Interestingly, there was also a cluster over left 
temporal scalp in the AV and Vk comparison (Fig. 3, left). 

C. Cortical Encoding of Speech 

Stimulus reconstruction was applied using two different 
approaches. In the first approach, decoders were averaged 
across trials, within subjects and conditions [9]. We found 
that condition had a significant impact on reconstruction 
accuracy (F(2,22) = 29.5, p < 0.001; Fig. 4A). A planned 
comparison showed that reconstruction accuracy for Vk (0.1 
± 0.03, mean ± SD) was significantly higher than that for Vu 
(0.08 ± 0.03; t(11) = 2.5, p < 0.05). Although care was taken 
to optimize regularization within each condition, it remains a 
possibility that the conditions with repeated stimuli (AV and 
Vk) were somewhat biased. In the second analysis, this bias 

was removed by averaging the decoders across subjects, 
within trials and conditions [6]. The impact of condition on 
reconstruction accuracy was weakened by this approach 
(F(2,22) = 6.2, p < 0.01; Fig. 4B). There was also no 
significant difference in reconstruction accuracy between Vk 
(0.041 ± 0.02) and Vu (0.044 ± 0.02; t(11) = 0.5, p > 0.05). 
While mean reconstruction accuracy values were 
significantly reduced across all three conditions, they were 
still higher than the 95th percentile of chance level (Fig. 4B).  

IV. DISCUSSION 

 Here, we tested the hypothesis that auditory cortex 
synthesizes the unheard speech signal during silent 
lipreading and that this synthesis is reflected in the neural 
tracking of the speech envelope. Specifically, we 
demonstrated that the temporal profile of the neural response 
to silent lipreading was significantly correlated with that of 
audiovisual speech over left temporal scalp, but only when 
lipreading was accurately perceived. We also showed that an 
estimate of the acoustic envelope could be reconstructed 
from EEG data recorded during silent lipreading with 
accuracy greater than chance level. 

The temporal response function (TRF), which maps 
sensory input to cortical activation, was used as a direct 
measure of envelope tracking [3]. We found that, although 
TRF SNR was relatively low over fronto-temporal scalp 
during silent lipreading (Fig. 2A, top), its temporal profile 
was significantly correlated with that of audiovisual speech 
when lipreading was accurately perceived (Fig. 3, left). This 
may suggest that accurate processing of visual speech 
features plays a role in envelope tracking, in line with work 
espousing an analysis-by-synthesis mechanism [4]. This is 
also supported by numerous studies that have reported 
attentional effects on envelope tracking (e.g., [10]). Indeed, 
we must consider the possibility that using the same stimulus 
in two of the three conditions may have had an impact on the 
similarity of the TRFs. In theory, this should not influence 
the correlation between TRFs because a TRF represents the 

 

Figure 2.  Temproal response function (TRF) timecourse and topography. A, TRFs over left fronto-temporal scalp (top) and right parieto-occipital scalp 

(bottom). B, Topographies of N1TRF components (left) and P2TRF components (right). Black markers indicate channel locations plotted in A. C, Statisitical 

cluster maps show where and when TRF amplitude is significantly different to zero (p < 0.05, t-tests; F = frontal, C = central, P = parietal, O = occipital).
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Figure 3.  Mean correlation coefficients (r) between the TRFs (0–250 ms) 

of each condition at each channel location. Black markers indicate channels 

where r is significantly greater than zero across subjects (p < 0.05, t-tests). 

impulse response to a unit change in stimulus intensity [3]. 
This is supported by the fact that the TRFs over occipital 
scalp were very similar in the Vk and Vu conditions (Fig. 3, 
right), even though different visual stimuli were presented. 

During silent lipreading, auditory cortex is not directly 
stimulated via the auditory nerve, hence TRF SNR over 
fronto-temporal scalp was reduced in the Vk and Vu 
conditions relative to the AV condition (Fig. 2A, top). This 
issue could be addressed by presenting audio noise that is 
spectrally matched to the absent speech signal [4]. This 
would directly stimulate the auditory nerve which may help 
boost auditory cortical responses. There was no difference in 
SNR over occipital scalp (Fig. 2A, bottom) because each 
condition was matched in terms of visual stimulus intensity. 
The regression analysis is sensitive to this occipital 
activation because instantaneous measures of motion during 
visual speech are highly correlated with the amplitude of the 
acoustic envelope [10]. However, in keeping with an 
analysis-by-synthesis mechanism, this occipital activity may 
in fact reflect the processing of visual speech features in 
visual cortex as opposed to just motion tracking. It has been 
shown that every level of speech structure can be perceived 
visually, thus suggesting that there are visual modality-
specific representations of speech in visual brain areas and 
not just in auditory brain areas (for a review, see [11]). 

The method of stimulus reconstruction was used as an 
alternative measure of envelope tracking [9]. We found that 
the fidelity with which we could reconstruct an estimate of 
the unheard acoustic signal was significantly improved when 
the subject could accurately lipread (Fig. 4A). This was true 
when each decoder was optimized separately within each 
condition so as not to bias those with repeated stimuli. 
However, as stated earlier, we cannot be certain that the AV 
and Vk decoders were not somewhat biased. Future work 
will address this issue by assigning a different stimulus to 
each condition (counterbalanced across subjects) and 
presenting each one an equal number of times to ensure 
equal bias. In the absence of such experimental 
manipulations, a within-trial analysis was carried out which 
removed any potential bias from the AV and Vk conditions. 
However, because this approach involved averaging 
decoders over subjects, the decoders were grossly 
generalized and reconstruction accuracies dropped 
considerably (Fig. 4B). This is caused by the inherent 
spatiotemporal variability in the neural activity of the twelve 
subjects [6]. 

V. CONCLUSION 

In summary, we have presented evidence to suggest that 
accurate lipreading may elicit envelope tracking in auditory  

 

Figure 4.  Reconstruction accuracy. A, Mean reconstruction accuracy of 

decoders fit within subjects, across trials. B, Mean reconstruction accuracy 

of decoders fit within trials, across subjects. The shaded area represents the 
95th percentile of chance level (permutation test). Error bars indicate SEM 

across subjects. Brackets indicate pairwise statisitcal comparisons            

(*p < 0.05, **p < 0.01, ***p < 0.001, NS = not significant). 

cortex reflective of visual speech processing. Although we 

cannot conclude on the impact of lipreading accuracy on 

stimulus encoding, we have demonstrated that it is possible 

to reconstruct an estimate of the envelope of covert speech 

from EEG data by utilizing the natural statistics of visual 

speech. While similar results have been demonstrated using 

ECoG [7], we suggest that EEG may provide a non-invasive 

and cost-effective solution to decoding imagined thoughts 

for future BCI technology. This may have implications for 

future visual speech research, as well as non-invasive BCI 

methodologies. As outlined above, future work will 

implement a modified paradigm to extend the results 

presented here. 
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